

Robust and Optimal Control

A Two-port Framework Approach

CSD approach to Stabilizing Controllers

A Introduction to Robust Control Synthesis

Control Design

- Robust control
- Adaptive control

- B.W.
- DC gain
- Rise time
- Phase margin

With uncertainty (a set)

- un-modeled dynamics
- parameter perturbation

•

• H_{∞} control: to minimize the infinity-norm $\|G\|_{\infty} = \sup_{\omega} \overline{\sigma} \big(G(j\omega) \big)$

Issues on Control Synthesis and Design

MIMO system / Multiple objectives.

Control Synthesis

To find a *K* such that the performance index can be guaranteed.

Performance Index

- B.W.
- DC gain
- Rise time
- Phase margin

$$T_{zw} = LFT_l(P, K)$$

= $P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}$

Note:

- 1. P is a generalized plant. (SCC plant)
- 2. P may contain weighting functions and controlled plant.
- 3. P's order = Controller order

An Overview

