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Coprimeness for the real numbersCoprimeness for the real numbers

One can start with the simplest case of real numbers. Given a real rational
nnumber , where d and n are two integers. If the greatest common divisor

(g.c.d.) of the pair of integers is 1, then d and n are called coprime and
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the called the coprime factorization of r over the integers. It is well known

that if a pair of integers are coprime, there exists a row vector of two
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is the coprime factorization of the real rational number 1.531.5
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C i i f l i l ith l ffi i tCoprimeness over a ring of polynomials with real coefficients

Proceeding forward, two polynomials are called coprime if they do not share common 

zeros.
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Trivially, this is a coprime factorization over the polynomial ring since one 

can find that
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ExampleExample : Check if is: Check if is coprimecoprime..
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The pair of                is not coprime since s=-3 is a common zero. It can also 

be seen that this factorization is reducible as that
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C i factorization of a rational functionCoprime factorization of a rational function

Two stable rational functions  M(s) and N(s) are coprime if there exist two stable 
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Till now, one has discussed the coprimeness of SISO systems over integers,
polynomials, and stable rational functions, respectively. In the following, one will expand
the coprimeness over stable rational function matrices which will be introduced for general
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MIMO cases in the development of control system analysis and synthesis.



Robust and Optimal Control - A Two-port Framework Approach

Coprime factorization over RH∞

Given a transfer function matrix T(s),  a basic problem is to find four transfer Given a transfer function matrix T(s),  a basic problem is to find four transfer 

function matrices N(s), M(s),        , and         in  RH∞ such that( )M s ( )N s

where the pair of                     is  right coprime, and                    left coprime. Such 
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