

Robust and Optimal Control

A Two-port Framework Approach

Linear Fractional Transformation

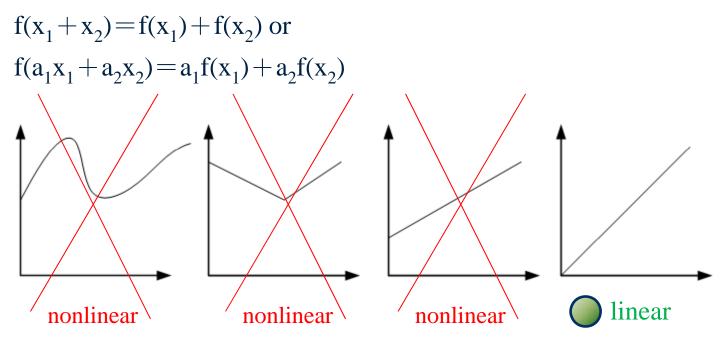
Definition of a linear system

If f(x) is linear, then it satisfies

1. homogenous

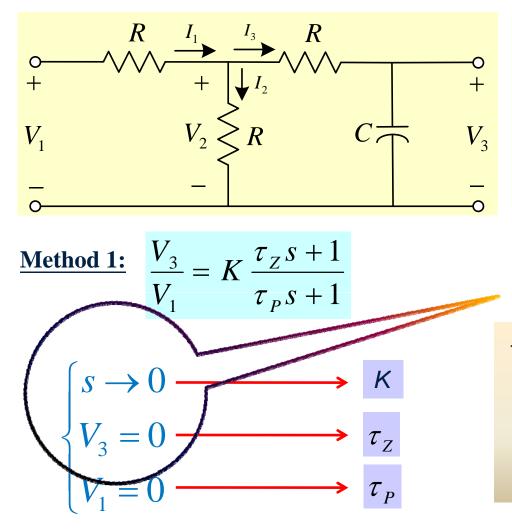
f(ax) = af(x)

2. superposition



Transfer Function

Example: Determine the transfer function of the following circuit.



<Physical Insight>

 $\begin{cases} s \to 0 : \text{the time goes to infinity} \\ V_3 = 0 : \text{the short circuit in output} \\ V_1 = 0 : \text{the short circuit in input} \end{cases}$

Transfer Function

a) time goes to infinity $s \rightarrow 0$: *dc gain* The capacitor is open circuit. $\frac{V_3}{V_1} = \frac{R}{R+R} = \frac{R}{R+R}$

b) $V_3 = 0$ the output is short circuit

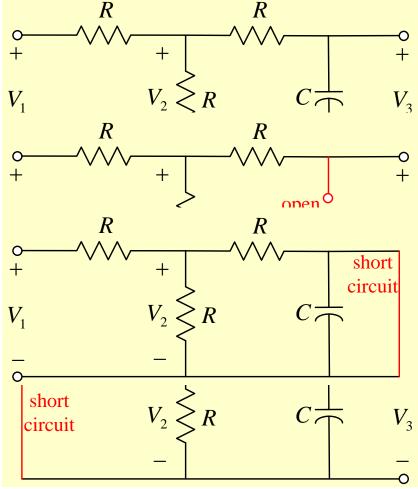
 τ_z : the time constant of the existing circuit +

$$\tau_z = R_{eq} \times C_{eq} = 0 \times C_{eq} = 0$$

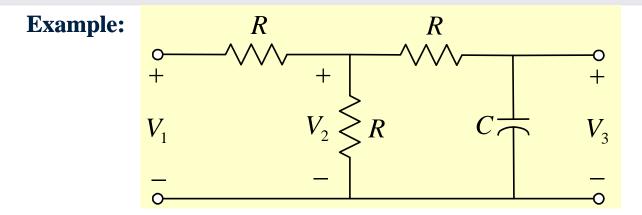
c) $V_1 = 0$ the input is short circuit

$$\tau_p = R_{eq} \times C_{eq} = \frac{3}{2}R \times C$$

$$T(s) = \frac{1}{2} \frac{1}{(\frac{3RC}{2})s+1} = \frac{1}{3RCs+2}$$



2



Method 2: Mason's Rule

$$M = \frac{\sum_{j} M_{j} \Delta_{j}}{\Delta}$$

M = transfer function or gain of the system

 M_{i} = gain of one forward path

j = an integer representing the forward paths in the system

 $\Delta_i = 1$ +the loops remaining after removing path *j*.

(1+the loops that don't touch the forward path M_j)

If none remain, then $\Delta_i = 1$

- $\Delta = 1 \sum \text{loop gains} + \sum \text{nontouching loop gains taken two at a time}$
 - $-\sum$ nontouching loop gains taken three at a time
 - + \sum nontouching loop gains taken four at a time...