

Robust and Optimal Control

A Two-port Framework Approach

State-space Formulae for Spectral Factorization

Outline

- Spectral factorizations
- Case I to III
- Examples

Spectral Factorization

Definition 1:

Consider a square matrix $\Omega(s)$ having the properties: $\Omega \in RL_{\infty}, \Omega^{-1} \in RL_{\infty}, \Omega^{\sim} = \Omega, and \Omega(\infty) > 0$ Then, $\Omega = \Phi^{\sim} \Phi$ is called the spectral factorization of $\Omega(s)$, and $\Phi \in GH_{\infty}$ is called spectral factor.

Both $\Phi(s)$ and its inverse are stable.

Note :

- 1. Because $\Omega = \Phi^{\tilde{a}} \Phi$, $\Omega(s)$ has poles and zeros in symmetry about the imaginary axis.
- 2. The spectral factor $\Phi(s)$ is outer.

Spectral Factorization

Definition 2:

Let $\Sigma = \Sigma^T$ and $\breve{\Sigma} = \breve{\Sigma}^T$ be constant matrices with compatible dimensions. Then $P(s) \in RL_{\infty}$ satisfying $P^{\sim}(s)\Sigma P(s) = \breve{\Sigma}$ is defined as weighted all-pass

Lemma Let
$$P(s) \stackrel{s}{=} \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \in RL_{\infty}$$
. Given $\Sigma = \Sigma^T$ and $\breve{\Sigma} = \breve{\Sigma}^T$

If
$$D^T \Sigma D = \breve{\Sigma}$$

and there exists a matrix $X = X^T \ge 0$ such that

$$XB + C^{T}\Sigma D = 0$$
$$A^{T}X + XA + C^{T}\Sigma C = 0$$

then

$$P^{\sim}(s)\Sigma P(s) = \overline{\Sigma}$$
 weighted all-pass