

Robust and Optimal Control

A Two-port Framework Approach

Robust Control Example -LFT

Robust and Optimal Control - A Two-port Framework Approach

Example

Please implementing LFT method and Mason rule to find the transfer function of $\frac{w}{r}$, and comparing the two methods.

LFT method

Step 1:Setting the cut points where the system doesn't have any closed loop.

We knows this system should have at least two cut points to achieve 'no closed -loop in this system'.

The system inputs and outputs are

- System input: $u_1 \ u_2 \ r$
- System output: $y_1 \cdot y_2 \cdot w$